初中數學《勾股定理》教案模板(通用13篇)
初中數學《勾股定理》教案模板 篇1
一、教案背景概述:
教材分析:勾股定理是直角三角形的重要性質,它把三角形有一個直角的"形"的特點,轉化為三邊之間的"數"的關系,它是數形結合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質,是初中數學教學內容重點之一。本節課的重點是發現勾股定理,難點是說明勾股定理的正確性。
學生分析:
1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設計,能非常簡單地將學生的注意力引向本節課的本質。
2、以與勾股定理有關的人文歷史知識為背景展開對直角三角形三邊關系的討論,能激發學生的學習興趣。
設計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發展史為主線貫穿課堂始終,讓學生對勾股定理的發展過程有所了解,讓他們感受勾股定理的豐富文化內涵,體驗勾股定理的探索和運用過程,激發學生學習數學的興趣,特別是通過向學生介紹我國古代在勾股定理研究和運用方面的成就,激發學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和探究創新的精神。
教學目標:
1、經歷用面積割、補法探索勾股定理的過程,培養學生主動探究意識,發展合理推理能力,體現數形結合思想。
2、經歷用多種割、補圖形的方法驗證勾股定理的過程,發展用數學的眼光觀察現實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養學生學習數學的興趣和愛國熱情。
4、欣賞設計圖形美。
二、教案運行描述:
教學準備階段:
學生準備:正方形網格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關人物歷史資料等投影圖片。
三、教學流程:
(一)引入
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關系)
(二)實驗探究
1、取方格紙片,在上面先設計任意格點直角三角形,再以它們的每一邊分別向三角形外作正方形,如圖1
設網格正方形的邊長為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)
交流后得出一般結論: (用關于a、b、c的式子表示)
(三)探索所得結論的正確性
當直角三角形的直角邊分別為a 、b,斜邊為c時, 是否一定成立?
1、指導學生運用拼圖、或正方形網格紙構造或設計合理分割(或補全)圖形,去探索本結論的正確性:(以四人小組為單位進行)
在學生所創作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
如圖2(用補的方法說明)
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發現以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發現進行了探究證明……,終獲成功。后來西方人們為了紀念他的這一發現,將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數學家,特別選用他設計的這種圖形為主圖發行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)
如圖3(用割的方法去探索)
師介紹: (出示圖片) 中國古代數學家們很早就發現并運用這個結論。早在公元前20__年左右,大禹治水時期,就曾經用過此方法測量土地的等高差,公元前1100年左右,西周的數學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數學家趙爽曾構造此圖驗證了這一結論的正確性。他的這個證明,可謂別具匠心,極富創新意識,他用幾何圖形的割、來證明代數式之間的相等關系,既嚴密,又直觀,為中國古代以"形"證"數",形、數統一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結論的數學家。我國數學家們為了紀念我國在這方面的數學成就,將這一結論命名為"勾股定理"。(點題)
20xx年,世界數學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數學的輝煌成就。(見課本50頁彩圖,欣賞圖片)
如圖4(構造新圖形的方法去探索)
師介紹:(出示圖片)勾股定理是數學史上的一顆璀璨明珠,它的證明在數學史上屢創奇跡,從畢達哥拉斯到現在,吸引著世界上無數的數學家、物理學家、數學愛好者對它的探究,甚至政界要人——美國第20任總統加菲爾德,也加入到對它的探索證明中,如圖是他當年設計的證明方法。據說至今已經找到的證明方法有四百多種,且每年還會有所增加。(若有時間可以繼續出示學生中有價值的圖片進行討論),有興趣的同學課后可以繼續探索……
四、總結:
本節課學習的勾股定理用語言敘說為:
五、作業:
1、繼續收集、整理有關勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運用。
初中數學《勾股定理》教案模板 篇2
【學習目標】
能運用勾股定理及直角三角形的判別條件解決簡單的實際問題.
【學習重點】
勾股定理及直角三角形的判別條件的運用.
【學習重點】
直角三角形模型的建立.
【學習過程】
一.課前復習
勾股定理及勾股定理逆定理的區別
二.新課學習
探究點一:螞蟻沿圓柱側面爬行的最短路徑問題
1.3如圖,有一個圓柱,它的高等于12cm,底面圓的周長是18cm.在圓柱下底面的A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,沿圓柱側面爬行的最短路程是多少?
思考:
1.利用學具,嘗試從A點到B點沿圓柱側面畫出幾條線路,你認為
這樣的線路有幾條?可分為幾類?
2.將右圖的圓柱側面剪開展開成一個長方形,B點在什么位置?從
A點到B點的最短路線是什么?你是如何畫的?
1.33.螞蟻從A點出發,想吃到B點上的食物,它沿圓柱側面爬行的最短路程是多少?你是如何解答這個問題的?畫出圖形,寫出解答過程。
4.你是如何將這個實際問題轉化為數學問題的?
小結:
你是如何解決圓柱體側面上兩點之間的最短距離問題的?
探究點二:利用勾股定理逆定理如何判斷兩線垂直?
1.31.31.3李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,
但他隨身只帶了卷尺。(參看P13頁雕塑圖1-13)
(1)你能替他想辦法完成任務嗎?
1.31.3(2)李叔叔量得AD的長是30cm,AB的長是40cm,
BD長是50cm.AD邊垂直于AB邊嗎?你是如何解決這個問題的?
(3)小明隨身只有一個長度為20cm的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
小結:通過本道例題的探索,判斷兩線垂直,你學會了什么方法?
探究點三:利用勾股定理的方程思想在實際問題中的應用
例圖1-14是一個滑梯示意圖,若將滑道AC水平放置,則剛好與AB一樣長.已知滑梯的高度CE=3m,CD=1m,試求滑道AC的長.
1.3
思考:
1.求滑道AC的長的問題可以轉化為什么數學問題?
2.你是如何解決這個問題的?寫出解答過程。
小結:
方程思想是勾股定理中的重要思想,勾股定理反應的直角三角形三邊的關系正是構建方程的基礎.
四.課堂小結:本節課你學到了什么?
三.新知應用
1.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
1.3
2.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達池邊的水面則這根蘆葦的長度是
1.3
五.作業布置:習題1.41,3,4題
【反思】
一、教師我的體會:
①、我根據學生實際情況認真備課這節課,書本總共兩個例題,且兩個例題都很難,如果一節課就講這兩題難題,那一方面學生的學習效率會比較低,另一方面會使學生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學生易于學習,有利于學生學習新知識、接受新知識,降低學習難度。
把教材讀薄,
②、除了備教材外,還備學生。從教案及授課過程也可以看出,充分考慮到了學生的年齡特點:對新事物有好奇心,但對新知識的鉆研熱情又不夠高,這樣,造成教學難度較大,為了改變這一狀況,在處理教材時,把某些數學語言轉換成通俗文字來表達,把難度大的運用能力降低為難度稍細的理解能力,讓學生樂于面對奧妙而又有一定深度的數學,樂于學習數學。
③、新課選用的例子、練習,都是經過精心挑選的,運用性強,貼近生活,與生活實際緊密聯系,既達到學習、鞏固新知識的目的,同時,又充分展現出數學教學的重大特征:數學源于生活實際,又服務于生活實際。勾股定理源于生活,但同時它又能極大的為生活服務。
④、使用多媒體進行教學,使知識顯得形象直觀,充分發揮現代技術作用。
二、學生體會:
課前,我們也去查閱了一些資料,關于勾股定理的證明以及有關的一些應用,通過這節課,真真發現勾股定理真真來源于生活,我們的幾何圖形和幾何計算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應用時,我覺得關鍵是找到相關的三角形,并且分清直角邊或斜邊,靈活機智地進行計算和一些推理。另外與同學間在數學課上有自主學習的機會,有相互之間的討論、爭辯等協作的機會,在合作學習的過程中共同提高我覺得都是難得的機會。鍛煉了能力,提高了思維品質,并且勾股定理的應用中我覺得圖形很美,古代的數學家已經有了很好的研究并作出了很大的貢獻,現代的藝術家們也在各方面用到很多,同時在課堂中漸漸地培養了我們的數學興趣和一定的思維能力。
不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時間去思考怎么畫,那會更好些,自然思維也得到了發展。課上老師鼓勵我們嘗試不完善的甚至錯誤的意見,大膽發表自己的見解,體現了我們是學習的主人。數學課堂里充滿了智慧。
初中數學《勾股定理》教案模板 篇3
教學目標
1、知識與技能目標
學會觀察圖形,勇于探索圖形間的關系,培養學生的空間觀念。
2、過程與方法
(1)經歷一般規律的探索過程,發展學生的抽象思維能力。
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數學建模的思想。
3、情感態度與價值觀
(1)通過有趣的問題提高學習數學的興趣。
(2)在解決實際問題的過程中,體驗數學學習的實用性。
教學重點:
探索、發現事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
教學難點:
利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題。
教學準備:
多媒體
教學過程:
第一環節:創設情境,引入新課(3分鐘,學生觀察、猜想)
情景:
如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
第二環節:合作探究(15分鐘,學生分組合作探究)
學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發現:沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數學解決實際問題的方法:建立數學模型,構圖,計算。
學生匯總了四種方案:
(1) (2) (3)(4)
學生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短。
學生在情形(3)和(4)的比較中出現困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據兩點之間線段最短可判斷(4)最短。
如圖:
(1)中A→B的路線長為:AA’+d;
(2)中A→B的路線長為:AA’+A’B>AB;
(3)中A→B的路線長為:AO+OB>AB;
(4)中A→B的路線長為:AB.
得出結論:利用展開圖中兩點之間,線段最短解決問題。在這個環節中,可讓學生沿母線剪開圓柱體,具體觀察。接下來后提問:怎樣計算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.
第三環節:做一做(7分鐘,學生合作探究)
教材23頁
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,
(1)你能替他想辦法完成任務嗎?
(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?
(3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
第四環節:鞏固練習(10分鐘,學生獨立完成)
1。甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發,他以6/h的速度向正東行走,1小時后乙出發,他以5/h的速度向正北行走。上午10:00, 甲、乙兩人相距多遠?
2。如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離。
3。有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?
第五環節 課堂小結(3分鐘,師生問答)
內容:
如何利用勾股定理及逆定理解決最短路程問題?
初中數學《勾股定理》教案模板 篇4
尊敬的各位領導,各位老師:
大家好!今天我說課的內容是初中八年級數學人教版教材第十八章第一節《勾股定理》(第一課時),下面我分五部分來匯報我這節課的教學設計,這就是"教材分析"、"學情分析"、"教法選擇"、"學法指導"、"教學過程"。
一、教材分析
(一) 教材地位和作用
勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數量關系,將幾何圖形與數字聯系起來。它在數學的發展中起過重要的作用,在生產生活中有著廣泛的應用。而且它在其它自然學科中也常常用到。因此,這節課有著舉足輕重的地位。
(二)教學目標
根據新課程標準的要求和本課的特點,結合學生的實際情況,我確定了本課的教學目標:
1、知識與技能方面
了解勾股定理的文化背景,經歷探索勾股定理的過程,掌握直角三角形三邊之間的數量關系, 并能簡單應用。
2、過程與方法方面
經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數學思考過程的條理性,發展數學的說理和簡單的推理的意識,和語言表達的能力,并體會數形結合和特殊到一般的思想方法。
3、情感態度與價值觀方面
(1)通過了解勾股定理的歷史,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。
(2) 通過研究一系列富有探 究性的問題,培養學生與他人交流、合作的意識和品質。
(三)教學重點難點
教學重點:掌握勾股定理,并能用它來解決一些簡單的問題。
教學難點:勾股定理的證明。
二、學情分析
我們班日常經常使用多媒體輔助教學。經過一年多的幾何學習,學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確 歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。 現在的學生已經厭倦教師單獨的說教方式,希望教師設計便于他們進行觀察的幾何環境,給他們自己探索、發表自己見解和表現自己才華的機會;更希望教師滿足他 們的創造愿望。
三、教法選擇
根據本節課的教學目標、教學內容以及學生的認知特點,結合我校的“當堂達標”教學模式,我在教法上采用引導發現法為主,并以分析法、討論法相結合。設計" 觀察——討論—歸納"的教學方法,意在幫助學生通過自己動手實驗和直觀情景觀察,從實踐中獲取知識,并通過討論來深化對知識的理解。本節課采用了多媒體輔 助教學,能夠直觀、生動的反應圖形,增加課堂的容量,同時有利于突出重點、分散難點,增強教學形象性,更好的提高課堂效率。
四、學法指導:
為了充分體現《新課標》的要求,培養學生的觀察分析能力,邏輯思維能力,積累豐富的數學學習經驗,這節課主要采用觀察分析,自主探索與合作交流的學習方 法,使學生積極參與教學過程。在教學過程中展開思維,培養學生提出問題、分析問題、解決問題的能力,進一步體會觀察、類比、分析、從特殊到一般等數學思 想。借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主人。
五、教學過程
根據《新課標》中"要引導學生投入到探索與交流的學習活動中"的教學要求,本節課的教學過程我是這樣設計的:
(一)創設情境,引入新課
一個設計合理的情境引入可以說在一定程度上決定著學生能否帶著興趣積極投入到本節課的學習中。為了體現數學源于生活,數學是從人的需要中產生的,學習數學的目的是為了用數學解決實際問題。我設計了以下題目:
星期日老師帶領全班同學去某山風景區游玩,同學們看到山勢險峻,查看景區示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,
∠ACB=90° ,你能用所學知識算出纜車路線AB長應為多少?
答案是不能的。然后教師指出,通過這節課的學習,問題將迎刃而解。
設計意圖:以趣味性題目引入。從而設置懸念,激發學生的學習興趣。 教師引導學生把實際問題轉化為數學問題,這其中滲透了一種數學思想,對于學生也是一種挑戰,能激發學生探究的欲望,自然引出下面的環節。
緊接著出示本節課的學習目標:
1、了解勾股定理的文化背景,體驗勾股定理的探索過程。
2、掌握勾股定理的內容,并會簡單應用。
(二)勾股定理的探索
1、猜想結論
(1)探究一:等腰直角三角形三邊關系。
由課本64頁畢達哥拉斯的故事,探究等腰直角三角形三邊關系。結合課件中格點圖形的面積,學生自主探究,通過計算、討論、總結,得出結論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。
在此過程中,給學生充分的時間、觀察、比較、交流,最后通過活動讓學生用語言概括總結。
提問:等腰直角三角形有這樣的性質,其他的直角三角形也有這樣的性質嗎?
(2、)探究二:一般的直角三角形三邊關系。
在課件中的格點圖形中,利用面積,再次探究直角三角形的三邊關系。學生自主探究,通過計算、討論、總結,得出結論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。
設 計意圖:組織學生進行討論,在此基礎上教師引導學生從三邊的平方有何大小關系入手進行觀察。教師在多媒體課件上直觀地演示。通過學生自己探索、討論,由學 生自己得出結論。這樣,讓學生參與定理的再發現過程,他們通過自己觀察、計算所得出的定理,在心理產生自豪感,從而增強學生的學習數學的自信心。
2、證明猜想
目前世界上證明該勾股定理的方法有很多種,而我國古代數學家利用拼接、割補圖形,計算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進行證 明。學生分組活動,根據圖形的面積進行計算,推導出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、
設計意圖:通過利用多媒體課件的演示,更直觀、形象的向學生介紹用拼接、割補圖形,計算面積的證明方法,使學生認識到證明的必要性、結論的確定性,感受到前人的偉大和智慧。
3、簡要介紹勾股定理命名的由來
我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數學家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國古代著名的數學著作《周髀算經》中、我國稱這個結論為"勾股定理",西方畢達哥拉斯于公元前五世紀發現了勾股定理, 但他比商高晚出生五百多年。
設計意圖:對比以上事實對學生進行愛國主義教育,激勵他們奮發向上。
(三)勾股定理的應用
1、利用勾股定理,解決引入中的問題。體會數學在實際生活中的應用。
2、教學例1:課本66頁探究1
師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內通過.
木板的寬2、2米大于2米,所以豎著不能從門框內通過.
因為對角線AC的長度最大,所以只能試試斜著 能否通過.
從而將實際問題轉化為數學問題.
提示:
(1)在圖中構造出一個直角三角形。(連接AC)
(2)知道直角△ABC的那條邊?
(3)知道直角三角形兩條邊長求第三邊用什么方法呢?
設計意圖:此題是將實際為題轉化為數學問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實際問題和勾股定理的知識聯系。通過系列問題的設置和解決,旨在降低難度,分散難點,使難點予以突破,讓學生掌握勾股定理在具體問題中的應用,使學生獲得新知,體驗成功,從而增加學習興趣。
(四)、課堂練習 習題18、1 1、5。 學生板演,師生點評。
設計意圖:通過練習使學生加深對勾股定理的理解,讓學生比較練習題和例題中條件的異同,進一步讓學生理解勾股定理的運用。
(五)課堂小結
對學生提問:"通過這節課的學習有什么收獲?"
學生同桌間暢談自己的學習感受和體會,并請個別學生發言。
設計意圖:讓學生自己小結,活躍了氣氛,做到全員參與,理清了知識脈絡,強化了重點,培養了學生口頭表達能力。
(六)達標訓練與反饋
設計意圖:必做題較為簡單,要求全體學生完成;選作題有一點的難度,基礎較好的學生能夠完成,體現分層教學。
以上內容,我僅從"說教材","說學情"、"說教法"、"說學法"、"說教學過程"五個方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學生人人參與,注重對學生活動的評價, 探索過程中,會為學生創設一個和諧、寬松的情境。希望得到各位專家領導的指導與指正,謝謝!
初中數學《勾股定理》教案模板 篇5
一、 教材分析
1. 教材的地位和作用
它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發展中起著重要的作用。
因此他的教育教學價值就具體體現在如下三維目標中:
知識與技能:
1、經歷勾股定理的探索過程,體會數形結合思想。
2、理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。
過程與方法:
1、經歷觀察—猜想—歸納—驗證等一系列過程,體會數學定理發現的過程,由特殊到一般的解決問題的方法。
2、在觀察、猜想、歸納、驗證等過程中培養學生們的數學語言表達能力和初步的邏輯推理能力。
情感、態度與價值觀:
1、通過對勾股定理歷史的了解,感受數學文化,激發學習興趣。
2、在探究活動中,體驗解決問題方法的多樣性,培養學生們的合作意識和然所精神。
3、讓學生們通過動手實踐,增強探究和創新意識,體驗研究過程,學習研究方法,逐步養成一種積極的生動的,自助合作探究的學習方式。
由于八年級的學生們具有一定分析能力,但活動經驗不足,所以
本節課教學重點:勾股定理的探索過程,并掌握和運用它。
教學難點:分割,補全法證面積相等,探索勾股定理。
二.。教法學法分析:
要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:
先從學生們熟知的生活實例出發,以生活實踐為依托,將生活圖形數學化,然后由特殊到一般地提出問題,引導學生們在自主探究與合作交流中解決問題,同時也真正體現了數學課堂是學生們自己的課堂。
學法:我想通過“操作+思考”這樣方式,有效地讓學生們在動手、動腦、自主探究與合作交流中來發現新知,同時讓學生們感悟到:學習任何知識的最好方法就是自己去探究。
三、 教學程序設計
1、 故事引入新課,激起學生們學習興趣。
牛頓,瓦特的故事,讓學生們科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的';生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。畢達哥拉斯的發現引入新課。
2、探索新知
在這里我設計了四個內容:
①探索等腰直角三角形三邊的關系
②邊長為3、4、5為邊長的直角三角形的三邊關系
③學生們畫兩直角邊為2,6的直角三角形,探索三邊的關系
④三邊為a、b、c的直角三角形的三邊的關系,(證明)
⑤勾股定理歷史介紹,讓學生們體會勾股定理的文化價值。
體現從特殊到一般的發現問題的過程。
3、新知運用:
①舉出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)
②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.
③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?
④如圖,學校有一塊長方形花鋪,有極少數人為了避開拐角走“捷徑”,在花鋪內走出了一條“路”.他們僅僅少走了 步路(假設2步為1米),卻踩傷了花草.
4、小結本課:
學完了這節課,你有什么收獲?
老師補充:科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。數學來源于實踐,而又應用于實踐。解決一個問題的方法是多樣性的,我們要多思考。 勾股定是數學史上的明珠,證明方法有很多種,我們將在下一節課學習它。
初中數學《勾股定理》教案模板 篇6
各位考官,大家好,我是X號考生,今天我說課的內容是《勾股定理的逆定理》。根據新課程標準,我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。
教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對教材的理解。
一、說教材
“勾股定理的逆定理”一節?是在上節“勾股定理”之后繼續學習的一個直角三角形的判斷定理,它是前面知識的繼續和深化。勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節也是本章的重要內容之一。
二、說學情
中學生心理學研究指出,初中階段是智力發展的關鍵年齡,學生邏輯思維從經驗型逐步向理論型發展,觀察能力、記憶能力和想象能力也隨著迅速發展。學生此前學習了三角形有關的知識,掌握了直角三角形的性質和勾股定理,學生在此基礎上學習勾股定理的逆定理可以加深理解。
三、說教學目標
根據數學課標的要求和教材的具體內容結合學生實際我確定了如下教學目標。
【知識與技能】
理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個三角形是不是直角三角形。
【過程與方法】
通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。
【情感態度與價值觀】
通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
四、說教學重難點
重點:勾股定理逆定理的應用;
難點:探究勾股定理逆定理的證明過程。
五、說教學方法
科學合理的教學方法能使教學效果事半功倍,達到教與學的和諧完美統一。基于此,我準備采用的教法是講練結合法,小組討論法。
六、說教學過程
(一)導入新課
在導入新課環節,我會采用溫故知新的導入方法,先讓學生回顧勾股定理有關知識,并引入本節課的課題——勾股定理逆定理。
【設計意圖】通過復習回顧能很好地將新舊知識聯系起來,使學生形成對知識的系統的認識。并且由舊知開始,能很好地幫助學生克服畏難情緒。
(二)探究新知
一開課我就提出了與本節課關系密切、學生用現有的知識可探索卻又解決不好的問題去提示本節課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個結,然后便得到一個直角三角形這是為什么?這個問題一出現,馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視激發了學生的興趣,因而全身心地投入到學習中來創造了我要學的氣氛,同時也說明了幾何知識來源于實踐不失時機地讓學生感到數學就在身邊。
因為幾何來源于現實生活,對初二學生來說選擇適當的時機讓他們從個體實踐經驗中開始學習可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設計是因為勾股定理逆定理的證明方法是學生第一次見,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。
接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等順利作出了輔助直角三角形,整個證明過程自然無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程。這樣學生不是被動接受勾股定理的逆定理?因而使學生感到自然、親切。學生的學習興趣和學習積極性有所提高,使學生確實在學習過程中享受到自我創造的快樂。
在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍充分發揮教科書的作用養成學生看書的習慣這也是在培養學生的自學能力。
(三)鞏固提高
本著由淺入深的原則安排了三個題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學生口答讓所有的學生都能完成。
第二題則進了一層用字母代替了數字,繞了一個彎,既可以檢查本課知識又可以提高靈活運用以往知識的能力。
思維提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋調節教法同時注意加強有針對性的個別指導把發展學生的思維和隨時把握學生的學習效果結合起來。
(四)小結作業
在小結環節,我會隨機詢問學生勾股定理的逆定理是什么?如果判斷一個三角形是不是直角三角形,以及勾股定理的逆定理的應用需要注意點什么等問題,先讓學生歸納本節知識和技能,然后教師作必要的補充,尤其是注意總結思想方法培養能力方面比如輔助線的添法。
設計意圖:這樣設計可以幫助學生以反思的形式回憶本節課所學的知識,加深對知識的印象,有利于學生良好的數學學習習慣的養成。
由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業。第一組是基礎題,我會用ppt出示關于勾股定理的逆定理的計算題目,這樣有利于學生學習習慣的培養,以及提高他們學好數學的信心。第二組是開放性題目,讓學生課后思考總結一下判定一個三角形是直角三角形的方法。
初中數學《勾股定理》教案模板 篇7
說課,就是教師備課之后講課之前(或者在講課之后)把教材、教法、學法、授課程序等方面的思路、教學設計、|板書設計及其依據面對面地對同行(同學科教師)或其他聽眾作全面講述的一項教研活動或交流活動。以下是小編整理的初中數學《勾股定理的逆定理》說課稿,歡迎大家閱讀參考。
一、教材分析:
(一)、本節課在教材中的地位作用
“勾股定理的逆定理”一節,是在上節“勾股定理”之后,繼續學習的一個直角三角形的判斷定理,它是前面知識的繼續和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節也是本章的重要內容之一。課標要求學生必須掌握。
(二)、教學目標:
根據數學課標的要求和教材的具體內容,結合學生實際我確定了本節課的教學目標。
知識技能:
1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形
過程與方法:
1、通過對勾股定理的逆定理的探索,經歷知識的發生、發展與形成的過程
2、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數與形結合方法的應用
3、通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。
情感態度:
1、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數與形的內在聯系,感受定理與逆定理之間的`和諧及辯證統一的關系
2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神
(三)、學情分析:
盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節課的重點、難點和關鍵。
重點:勾股定理逆定理的應用
難點:勾股定理逆定理的證明
關鍵:輔助線的添法探索
二、教學過程:
本節課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結構與幾何知識結構之間筑了一個信息流通渠道,進而達到完善學生的數學認識結構的目的。
(一)、復習回顧:復習回顧與勾股定理有關的內容,建立新舊知識之間的聯系。
(二)、創設問題情境
一開課我就提出了與本節課關系密切、學生用現有的知識可探索卻又解決不好的問題,去提示本節課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結,然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發了學生的興趣,因而全身心地投入到學習中來,創造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數學就在身邊。
(三)、學生在教師的指導下嘗試解決問題,總結規律(包括難點突破)
因為幾何來源于現實生活,對初二學生來說選擇適當的時機,讓他們從個體實踐經驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。
接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創造的快樂。
在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發揮教課書的作用,養成學生看書的習慣,這也是在培養學生的自學能力。
(四)、組織變式訓練
本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,字母代替了數字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學生能夠推出可能的結論,這些作法培養了學生靈活轉換、舉一反三的能力,發展了學生的思維,提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調節教法,同時注意加強有針對性的個別指導,把發展學生的思維和隨時把握學生的學習效果結合起來。
(五)、歸納小結,納入知識體系
本節課小結先讓學生歸納本節知識和技能,然后教師作必要的補充,尤其是注意總結思想方法,培養能力方面,比如輔助線的添法,數形結合的思想,并告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發現并證明的,這種討論問題的方法是培養我們發現問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。
(六)、作業布置
由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業。A組是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養,以及提高他們學好數學的信心。B組題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養他們的思維素質,發展學生的個性有積極作用。
三、說教法、學法與教學手段
為貫徹實施素質教育提出的面向全體學生,使學生全面發展主動發展的精神和培養創新活動的要求,根據本節課的教學內容、教學要求以及初二學生的年齡和心理特征以及學生的認知規律和認知水平,本節課我主要采用了以學生為主體,引導發現、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養學生的學習興趣,調動學生的學習積極性,發展學生的思維;有利于培養學生動手、觀察、分析、猜想、驗證、推理能力和創新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。
此外,本節課我還采用了理論聯系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯系學生現有的經驗和感性認識,由最鄰近的知識去向本節課遷移,通過動手操作讓學生獨立探討、主動獲取知識。
總之,本節課遵循從生動直觀到抽象思維的認識規律,力爭最大限度地調動學生學習的積極性;力爭把教師教的過程轉化為學生親自探索、發現知識的過程;力爭使學生在獲得知識的過程中得到能力的培養。
初中數學《勾股定理》教案模板 篇8
一、說教材
勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。
據此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。
教學重點:勾股定理的證明和應用。
教學難點:勾股定理的證明。
二、說教法和學法
教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:
1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓同學們主動參與學習全過程。
2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。
三、教學程序
本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:
(一)創設情境 以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。
2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。
3、板書課題,出示學習目標。
(二)初步感知 理解教材
教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。
(三)質疑解難 討論歸納
1、教師設疑或學生提疑。如:如何證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發同學們的表現欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習 強化提高
1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結 練習反饋
引導同學們對知識要點進行總結,梳理學習思路。分發自我反饋練習,同學們獨立完成。
本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。
初中數學《勾股定理》教案模板 篇9
一、教材分析
(一)教材地位
這節課是九年制義務教育初級中學教材北師大版八年級第一章第一節《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)教學目標
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。
情感態度與價值觀:激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學。
(三)教學重點:
經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發現勾股定理。
突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。
二、教法與學法分析:
學情分析:八年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:結合八年級學生和本節教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。
三、教學過程設計
1、創設情境,提出問題
2、實驗操作,模型構建
3、回歸生活,應用新知
4、知識拓展,鞏固深化5。感悟收獲,布置作業
(一)創設情境提出問題
樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?
設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節。
實驗操作模型構建
1、等腰直角三角形(數格子)
2、一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?
設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想。
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)
設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。
通過以上實驗歸納總結勾股定理。
設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊——一般的認知規律。
回歸生活應用新知
讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。
四、知識拓展鞏固深化
基礎題,情境題,探索題。
設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展。知識的運用得到升華。
基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?
設計意圖:這道題立足于雙基.通過學生自己創設情境,鍛煉了發散思維.
情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?
設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。
探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力。
五、感悟收獲布置作業:
這節課你的收獲是什么?
1、課本習題。
2、搜集有關勾股定理證明的資料。
板書設計探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
李景萍《探索勾股定理》第一課時說課稿
設計說明:
1、探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.
2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。
初中數學《勾股定理》教案模板 篇10
一、教材分析:
(一)教材的地位與作用
從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。
從學生認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態度。其中情感態度方面,以我國數學文化為主線,激發學生熱愛祖國悠久文化的情感。
(二)重點與難點
為變被動接受為主動探究,我確定本節課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發現勾股定理確定為本節課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
二、教學與學法分析
教學方法葉圣陶說過"教師之為教,不在全盤授予,而在相機誘導。"因此教師利用幾何直觀提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
三、教學過程
我國數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節課設計為以下五個環節。
第一、情境導入古韻今風
給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。讓學生觀察并思考三個正方形面積之間的關系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著怎么樣數學奧秘呢?寓教于樂,激發學生好奇、探究的欲望。
第二、追溯歷史解密真相
勾股定理的探索過程是本節課的重點,依照數學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。
從上面低起點的問題入手,有利于學生參與探索。學生很容易發現,在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現了轉化的思想。觀察發現雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現了數形結合的思想。學生會想到用"數格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用"割"和"補"的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。
突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了"從特殊到一般"的認知規律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環節的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示"割"的方法,"補"的.方法,有的學生可能會發現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養學生的類比、遷移以及探索問題的能力。
使用幾何畫板動態演示,使幾何與代數之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。
以上三個環節層層深入步步引導,學生歸納得到命題1,從而培養學生的合情推理能力以及語言表達能力。
感性認識未必是正確的,推理驗證證實我們的猜想。
第三、推陳出新借古鼎新
教材中直接給出"趙爽弦圖"的證法對學生的思維是一種禁錮,教師創新使用教材,利用拼圖活動解放學生的大腦,讓學生發揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。
教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現出"學生是學習的主體,教師是組織者、引導者與合作者"這一教學理念。學生會發現兩種證明方案。
方案1為趙爽弦圖,學生講解論證過程,再現古代數學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發掘過程,體會數學的嚴謹性。對比"古"、"今"兩種證法,讓學生體會"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書勾股定理,進而給出字母表示,培養學生的符號意識。
教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數學文化,培養民族自豪感和愛國主義精神。利用勾股樹動態演示,讓學生欣賞數學的精巧、優美。
第四、取其精華古為今用
我按照"理解—掌握—運用"的梯度設計了如下三組習題。
(1)對應難點,鞏固所學。
(2)考查重點,深化新知。
(3)解決問題,感受應用。
第五、溫故反思任務后延
在課堂接近尾聲時,我鼓勵學生從"四基"的要求對本節課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。
然后布置作業,分層作業體現了教育面向全體學生的理念。
初中數學《勾股定理》教案模板 篇11
通過復習讓學生充分回憶前面學習的有關三角形的內容,使學生加深對知識的理解,從而為本節課的學習打下良好的基礎。同時,學生回憶的過程也是一個思考的過程,特別是面積法來驗證勾股定理,是本章教學的難點,對此學生應該先形成一個印象、概念,然后才能學習掌握好。
已知直角三角形中的兩條直角邊求斜邊,這是上節課學習的內容。在上節課學習過程中,學生已經練習過。但為什么本節課中仍然有部分學生出錯呢?究其原因,是因為上節課學習的內容太多,方法也較多、較靈活,因而學生對每一個內容與方法都仍是一種感性的認識,而仍沒達到理解掌握的程度。因此,當讓學生自己獨立完成問題時,往往就產生了思維上存在的缺點,從而出現各種錯誤。另一方面,教學中我們往往會采用一種“一問齊答”的問答形式,這樣會容易掩蓋學生的真實想法。其實,在解答此問題時,教師很容易就走進了這樣的問答方式,原因在于我們認為這樣的問題太簡單了,上節課學生也似學會了,于是便產生了一種忽視的教學。可現實卻往往不是這樣的,我們認為簡單的知識對于學生(特別是基礎較弱的學生)來說,往往是不簡單的。因此,教學中應盡量少用“一問齊答”的欺騙教師的問答方式,讓學生充分發表自己的意見,同時引導學生分析錯誤,養成反思的意識,只有這樣,才能真正使學生學有所獲。
同一個問題的不同變式,可以讓學生自我檢查對知識與方法是否能真正達到理解、掌握與運用,從而提高學生學習的自信心。解答這個問題的.方法其實就是驗證勾股定理所用到的方法——面積法。在課堂教學之初始讓學生回憶上一堂課的方法,有了一個初步的印象,在這里再提出來時學生就不會感到突然和陌生,達到承上啟下的作用。另一方面,教師在講解問題的解答時,并不是把問題的解答方法與過程全部一下子出來,而是引導學生經過一步步的思考,讓學生自己在思考與感悟中得到問題的解答,這樣可以培養學生思考問題的方法,提高學生的思維能力。如果此時能對已經解答出來的同學大力表揚,并讓學生引導學生來解答余下的問題,那么效果會更好。
數學問題生活化,用數學知識解決生活中的實際問題,是課程改革后數學課堂教學必須實施的內容。在解答實際生活中的問題時,關鍵在于把生活問題轉化為數學問題,讓生活問題數學化,然后才能得以解決。在這個過程中,很多時候需要教師幫助學生去理解、轉化,而更多時候需要的是學生自己探索、嘗試,并在失敗中尋找成功的途徑。本題教學中,如果能讓學生自己反思答案與方法的合理性,那么效果會更好了。課前預設與課堂生成,
這是課程改革以來出現的最多問題之一。課堂教學任務要完成,而課堂又要還給學生,充分發揮學生的自主性,那么如何處理好這個問題呢?在本課最后的這個環節里,如果能引導學生歸納本課學生的方法,特別是面積法,然后再給一個簡單的問題來鞏固,那么效果肯定會比這樣匆匆結束課堂要好。但是,這部分知識內容又什么時候來解決呢?不解決行不行呢?這是課后困擾我的問題。“課堂教學應基于自身班級學生的具體情況,不論是課前預設(備課)還是課堂教學過程,都應以使絕大部分學生能真正學習掌握好為基礎。”經過本節課的教學后,我自己對有效的課堂產生了一個這樣的認識。在以“知識為中心”還是以“學生學習為中心”的這個問題上,我想應以學生為中心,同時兼顧教學內容的完成,如果發生矛盾時,那么我想是不是仍應以學生為中心呢?這樣教學任務完成不了怎么辦呢?影響教學進度又怎么辦呢?考試又怎么辦呢?……。其實,歸根到底是:考試了怎么辦呢?課程改革已走到了第七個年頭,考試始終是一根有形無形的指揮棒在影響著我們每堂課的教學,在影響著我們的教學觀念與教學方法,甚至于影響我們的教學理想。其實我們都很清楚,這樣匆匆的進行課堂教學,雖然表面上看是完成了教學內容,但實際上學生并沒有掌握好,考試時真的出現時學生仍是無法解答,那么,這樣的教學豈不是也是無效的嗎?無效的教學是不是在浪費學生的精力與時間呢?這樣是不是有點自欺欺人了呢?想到這,我越感不安了
因此,如果有機會再上這節課,就算前面能提高一點效率,節省一點時間,我也會省去后面的那部分內容,增加一些有趣味的生活問題,總結與反思本課的方法,從而使學生對本課學習掌握得更好,對自身的數學學習更有自信。
初中數學《勾股定理》教案模板 篇12
教材分析:
如果說數學思想是解決數學問題的一首經典老歌,那么本節課蘊含的由特殊到一般的思想、數學建模的思想、轉化的思想就是歌中最為活躍的音符!本節的內容是在學習了二次根式之后的教學,是在學生已經掌握了直角三角形的有關性質的基礎上進行的后繼學習,是中學數學幾個重要定理之一。它揭示了直角三角形三條邊之間的數量關系,是解直角三角形的主要根據之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。
勾股定理的發現、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節在教材中起著承前啟后的橋梁作用。
新課標下的數學教學不僅是知識的教學,更應注重能力的培養及情感的教育,因此,根據本節在教學中的地位和作用,結合初二學生不愛表現、好靜不好動的特點,我確定本節教學目標如下:
1、探索并利用拼圖證明勾股定理。
2、利用勾股定理解決簡單的數學問題。
3、感受數學文化,體會解決問題方法的多樣性和數形結合的思想。
本著課標的要求,在吃透教材的基礎上,我確定本節的教學重點、難點、關鍵如下:
勾股定理的證明和簡單應用是本節的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。
為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:
教法分析:
新課程標準強調要從學生已有的經驗出發,最大限度的激發學生學習積極性,新課程下的數學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數學的過程,激發學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發現法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發展打下堅實的基礎。為了增大課堂容量、給學生創設高效的數學課堂,給學生提供足夠從事數學活動的時間,以導學案的形式、運用多媒體輔助教學。
學法分析:
學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養學生良好的學習品質和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養學生的邏輯思維能力和語言表達能力。
為了充分調動學生的學習積極性,創設優化高效的數學課堂,我以導學案的方式循序見進的設計教學流程。
以學生必讀課本48—52頁,選讀課本55、56頁的課前預習為前提,共分四個環節來進行教學
1、勾股定理的探究:讓學生歷經量一量、算一算、想一想的由特殊到一般的數學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。
2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的證明。
3、勾股定理的應用:以課堂練習、學生個性補充和老師適當的個性化追加的形式實現對定理的靈活應用。
4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現對本節內容的鞏固與升華。
說創新點:
為了給學生營造一個和諧、民主、平等而高效的數學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當的起點和方法,充分發揮學生的主體地位與教師主導作用相統一的原則。教學中注重學生的動手操作能力的培養,化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。
教學中我注重人文環境的創設,使數學課堂充滿親切、民主的氣氛,例如整節課我以學生的操作、展示、講解、個性補充為主,拉近了數學與學生的距離,激發了學生的學習興趣;為了使不同的'學生得到不同的發展,人人學有價值的數學,在教學中我創造性的使用教材,在不改變例題的本意為前提,創設身邊暖房工程為情境,體現數學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現數學的變化美。
以學生個性補充的形式促進課堂新的生成,最大限度的培養學生創新思維,使不同的人在數學上有不同的發展。本節課既做到了課程的開放,為充分發揮學生聰明智慧和創造性的思維提供了空間,又創設了具有獨特教學風格的作文式數學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數學文化的薰陶和數學思想的滲透,注重美育、德育與教育的三統一,如小結時由“勾股樹”到“智慧樹”的希望寄語。
初中數學《勾股定理》教案模板 篇13
義務教育課程標準實驗教材八年級數學(下)《勾股定理》的第一課時,教材的重點是讓學生經歷勾股定理的探索和證明過程,了解勾股定理的背景知識,在學習知識的同時,感受勾股定理的豐富文化內涵,激發學生的學習興趣,對學生進行思想品德教育。
在講課時,由于沒有認真準備,也沒有讓學生準備學具,所以在上課時,只是讓學生利用書中的圖形來進行探究。對于勾股定理的證明,只是用了四個全等的直角三角形拼了拼,運用同一圖形的不同表示法得出了結論。一節課,將課堂重點放到了對勾股定理結論的記憶和運用上,淡化了教材對勾股定理的探索和證明過程,結果只有班內少數同學學到了探索和證明方法,教學效果不佳。
這節課講過沒多久,由于要參加優質課比賽,我又認真對這節課進行了準備。針對教材的任務要求,我對本節課的教學過程是這樣設計的:
1、欣賞圖片,激發興趣
通過欣賞20__年在我國北京召開的國際數學家大會的會徽圖案,引出“趙爽弦圖”,讓學生了解我國古代輝煌的數學成就,引入課題。
接下來,讓學生欣賞傳說故事:相傳2500年前,畢達格拉斯在朋友家做客時,發現朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數量關系。通過故事使學生明白:科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。
這樣,一方面激發學生的求知欲望,另一方面,也對學生進行了學習方法指導和解決問題能力的培養。
2、分析探究,得出猜想
通過對地板圖形中的等腰直角三角形到一般直角三角形中三邊關系的探究,讓同學們體驗由特殊到一般的探究過程,學習這種研究方法。
在這一過程中,學生充分利用學具去嘗試解決,力求讓學生自己探索,先在小組內交流,然后在全班交流,盡量學習更多的方法。
3、拼圖證明,得出定理
先了解趙爽的證明思路,然后讓學生利用學具自己剪拼,并利用圖形進行證明。
由于難度比較大,組織學生開展小組合作學習。教師要巡回輔導,給予學生必要的幫助。
4、反思歸納,總結升華
一是讓學生自己回顧總結本節的收獲。(當然多數為具體的知識和方法)。二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數學素養,適時對大家進行思想教育。
5、練習鞏固
主要練習勾股定理的其它證明方法。
6、作業設計
請你利用網絡資源,收集有關勾股定理的證明方法來進行學習。寫出有關勾股定理知識的小論文,以便用來參加全市“小小科學家”創新大賽。一個月過去了,我已忘記了這一項特殊的作業,但部分學生卻寫出了出乎意料的小論文。
在優質課上,對教材中的探究內容,不但制作了多媒體課件,還讓每個學生都準備了探究圖形和拼圖紙板。在課堂上,學生通過自己嘗試探究、小組交流合作、集中成果展示等多種形式參與課堂活動,雖然已是講過的知識,但在試講(本班學生)和比賽中(借外校學生上課),由于這次是讓學生來探究獲取知識,學生普遍參與,學習興趣深厚,參與活動的積極性很高,小組分工合作任務明確,課堂效果很好。學生在掌握了知識的同時,由于真正經歷了探究的整個過程,對科學家敏銳的觀察力和勤于思考的作風理解頗深,并學到了一些新的探究方法,在思想上也受到了教育和啟迪。課堂教學目標順利完成,整個課堂絲毫沒有那種“熟課”學生不想上的痕跡。
通過這節課的兩種不同的上法,以及學生的不同表現與收獲,讓我更深刻地認識到:
(1)新課改理念只有全面滲透到教育教學工作中,與平時工作緊密結合,才能夠促進學生的全面發展;
(2)教師要充分利用課堂內容為整體課程目標服務,不要僅限于本節課的知識目標與要求,就知識“教”知識,而要通過知識的學習獲得學習這些知識的方法,同時,還要充分利用課堂對學生進行情感態度價值觀的教育,真正讓教材成為教育學生的素材,而不是學科教學的全部;
(3)要相信學生的能力,為學生創造自我學習和創造的機會(如布置開放性的學習任務:數學實踐活動、研究學習、寫小論文等)。我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現教育的本來目標,而且也一定能讓學生“考出”好的成績;不過,這樣教師一定不會輕松。
