高等數(shù)學(xué)學(xué)習(xí)心得體會(huì)_高等數(shù)學(xué)學(xué)習(xí)總結(jié)(精選4篇)
高等數(shù)學(xué)學(xué)習(xí)心得體會(huì)_高等數(shù)學(xué)學(xué)習(xí)總結(jié) 篇1
不是誤導(dǎo)大家武漢大學(xué)的教科書實(shí)在是很難理解,兩本加起來足是一本字典,是編者賣弄的園地,所以強(qiáng)烈建議不要和此書叫板,我曾試過一年完全是浪費(fèi)時(shí)間,即使有同學(xué)看懂了,但仍難以對(duì)付實(shí)戰(zhàn)。
我的建議是以戰(zhàn)致戰(zhàn),就是通過做歷年的考試題的方法順利通過考試。此法花費(fèi)時(shí)間極小,但可以獲得很大的收益,從經(jīng)濟(jì)的角度講就是效益最大化。
具體實(shí)施方法:
首先,高高興興的將書撕碎,優(yōu)點(diǎn)有三:1)不給自己浪費(fèi)時(shí)間的機(jī)會(huì)。2)建立此戰(zhàn)必勝的信心。3)心情將更加愉悅。
其次:把各年試卷及答案]收集齊,網(wǎng)上不難找到,書店中也可買到。實(shí)在不行我給你個(gè)網(wǎng)址。強(qiáng)烈建議從1997年下半年到20xx年上半年共十套試卷,這套模擬題就是葵花寶典,沒事就做吧,一遍不行,至少十遍,知道答案不行,必須要知道過程。當(dāng)你做到第三遍時(shí)你就會(huì)發(fā)現(xiàn)所有試卷的共同之處,每年的試題是等的相似。第五遍第七遍時(shí),你就會(huì)因?yàn)檎也坏讲粫?huì)的題而痛苦萬分。
最后,是考前不用動(dòng)筆用腦看題非常快的看上3遍,一個(gè)框架會(huì)產(chǎn)生在你的大腦中。合格證對(duì)于你來說,已經(jīng)成了一張名片,伸手就拿!
20xx年,在今年進(jìn)行新的考試。相信要在今年自考的廣大群體以進(jìn)入了金鑼彌補(bǔ)的準(zhǔn)備當(dāng)中,小編也會(huì)更多的發(fā)布一些相關(guān)信息希望可以為您提供到幫助。
高等數(shù)學(xué)學(xué)習(xí)心得體會(huì)_高等數(shù)學(xué)學(xué)習(xí)總結(jié) 篇2
高等數(shù)學(xué)是大學(xué)工科課程里的一門重要基礎(chǔ)課。它的重要性,我相信大家都了解。高等數(shù)學(xué)是許多課程的基礎(chǔ),特別是與以后的許多專業(yè)課都緊密相連。因此,學(xué)好高等數(shù)學(xué)對(duì)于一名工科學(xué)生來說,至關(guān)重要。
然而,對(duì)于許多同學(xué)來說,高等數(shù)學(xué)是一門頭疼的學(xué)科。如何學(xué)好高等數(shù)學(xué)呢?下面是我個(gè)人在學(xué)習(xí)過程中的一些心得體會(huì)。
首先,我覺得高等數(shù)學(xué)與以前我們高中所學(xué)的數(shù)學(xué)有一點(diǎn)不同。高等數(shù)學(xué)注重的是一種數(shù)學(xué)的思想,比如說微積分思想,極限的思想。強(qiáng)調(diào)的數(shù)學(xué)的邏輯性與分析性。不像高中數(shù)學(xué)那樣注重技巧性。因此,在學(xué)習(xí)的過程中,課本的知識(shí)至關(guān)重要。對(duì)于課本上面每一個(gè)概念、定理、公式、例題,都要理解清楚。特別是對(duì)于定理、公式的推導(dǎo)過程,不僅要弄懂每一步的推導(dǎo)過程如何來,而且還要學(xué)會(huì)自己推導(dǎo)。因?yàn)閷W(xué)會(huì)自己推導(dǎo),更有助于我們的記憶和應(yīng)用。我的經(jīng)驗(yàn)是,在理解的基礎(chǔ)上去記憶公式,而不是一味的死記硬背。
第二,學(xué)習(xí)數(shù)學(xué)是不能缺少訓(xùn)練的。一定量的課后習(xí)題訓(xùn)練,不但可以讓我們鞏固我們學(xué)到的知識(shí)點(diǎn),學(xué)會(huì)如何在實(shí)際中應(yīng)用我們學(xué)到的公式定理,還有助于我們熟悉考試的各種題型。還有,題目并不是越多越好,題海戰(zhàn)術(shù)不僅浪費(fèi)大量的時(shí)間與精力,而且效果也不好。我的經(jīng)驗(yàn)是,每做完一道題都要總結(jié)一下,特別是做錯(cuò)的題目,這道題的知識(shí)點(diǎn)是哪些?應(yīng)用了哪些公式定理?錯(cuò)在哪里?為什么會(huì)做錯(cuò)?學(xué)會(huì)思考,學(xué)會(huì)總結(jié),這樣做題才能達(dá)到事半功倍的效果。
最后,學(xué)好數(shù)學(xué)是一個(gè)堅(jiān)持的過程。高等數(shù)學(xué)的內(nèi)容環(huán)環(huán)相扣,哪一個(gè)環(huán)節(jié)脫節(jié)都會(huì)影響整個(gè)學(xué)習(xí)的進(jìn)程。所以,平時(shí)學(xué)習(xí)不應(yīng)貪快,要一節(jié)一節(jié),要一章一章過關(guān),不要輕易留下自己不明白或者理解不深刻的問題。這樣,對(duì)于后面的學(xué)習(xí)會(huì)造成很大的影響。
高等數(shù)學(xué)學(xué)習(xí)心得體會(huì)_高等數(shù)學(xué)學(xué)習(xí)總結(jié) 篇3
隨著科技日新月異的發(fā)展和電腦無孔不入的應(yīng)用.高等數(shù)學(xué)課程作為一種數(shù)學(xué)工具的功能正在逐步縮減.但作為一種思維方法的載體的功能(例如訓(xùn)練學(xué)生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風(fēng)采。一個(gè)多元線性方程組如何去解?我們可以交給電腦去完成,只要會(huì)正確使用數(shù)學(xué)軟件。但一個(gè)實(shí)際問題如何通過數(shù)學(xué)建模轉(zhuǎn)化為一個(gè)數(shù)學(xué)同題,除了必須具備許多綜合的知識(shí),還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學(xué)這樣的課程作為載體來進(jìn)行系統(tǒng)訓(xùn)練,將是事半功倍的。
以往對(duì)工科學(xué)生來講,高等數(shù)學(xué)的教學(xué)比較偏重于計(jì)算方法的訓(xùn)練,例如,如何計(jì)算極限,計(jì)算導(dǎo)數(shù),計(jì)算積分,通過熟練掌握計(jì)算方法來加深對(duì)概念的理解,這是學(xué)習(xí)高等數(shù)學(xué)的一條捷便之徑。但是從二十一世紀(jì)更加需要?jiǎng)?chuàng)新人才的觀點(diǎn)看,從高等數(shù)學(xué)的概念中直接去提煉一種分析推理能力及實(shí)際應(yīng)用能力,將是更加重要的。(當(dāng)然,在改革的力度還未到位時(shí),由于教學(xué)要求及教材等原因.學(xué)習(xí)高等數(shù)學(xué)并不能僅偏重于概念,對(duì)基本的計(jì)算方法必須熟練地掌握。如今就如何學(xué)好高等數(shù)學(xué)的基本概念。提出一些拙見供同學(xué)參考。
1)從正反兩個(gè)層面理解概念
我們觀察一個(gè)物體,如果僅僅通過平視去進(jìn)行,那么對(duì)這個(gè)物體的認(rèn)識(shí)往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個(gè)抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止.只有從正反兩個(gè)方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應(yīng)該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的.還是充分的?三是概念產(chǎn)生的實(shí)際背景是什么?這里所說的反方向思維又應(yīng)該包含兩層意思:一是對(duì)一個(gè)概念的否定是怎樣表達(dá)的?二是如果錯(cuò)誤的理解了概念中的一些條件會(huì)導(dǎo)致什么樣的錯(cuò)誤結(jié)果。
2)學(xué)與問
古人說.學(xué)起于思,思源于疑,這話道出了做學(xué)問的過程中發(fā)現(xiàn)問題提出問題的重要性。高等數(shù)學(xué)的講課進(jìn)程一般都比較快的,課堂上講的內(nèi)容不能完全聽懂是正常的現(xiàn)象,同題在于聽不懂看不懂的內(nèi)容是隨意放棄呢還是努力請(qǐng)教老師請(qǐng)教同學(xué)直到學(xué)懂為止。如果輕易放棄.時(shí)間一長就會(huì)失去學(xué)習(xí)的信心,所以一定要以鍥而不舍的精神邊學(xué)邊問。不過這樣的提問還只是被動(dòng)的,主動(dòng)的提問應(yīng)該是自己在學(xué)習(xí)過程中去發(fā)現(xiàn)同題。如何才能
發(fā)現(xiàn)問題呢?首先要提倡自學(xué),在自己預(yù)習(xí)教材(也鍛煉了一種自學(xué)能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會(huì)有的放矢。其次是聽課之后做習(xí)題之前要認(rèn)真復(fù)習(xí)消化課上的內(nèi)容,只要積極地開動(dòng)腦筋,從中是會(huì)發(fā)現(xiàn)很多問題的,在這個(gè)較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學(xué)與老師的幫助),那么分析問題的能力就會(huì)有一個(gè)質(zhì)的提高。
3)做習(xí)題與想習(xí)題
學(xué)習(xí)數(shù)學(xué),不做習(xí)題是絕對(duì)不行的.因?yàn)槟透拍罹烤估斫馀c否檢驗(yàn)的最后關(guān)口是習(xí)題。一道習(xí)題不會(huì)做或者做錯(cuò)了,肯定是某些概念投有消化好,帶著習(xí)題再來復(fù)習(xí)理解概念,拄往會(huì)摩擦出新的思想火花。學(xué)習(xí)高等數(shù)學(xué)的過程中,我們不主張采用中學(xué)的題海戰(zhàn),但對(duì)每道習(xí)題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進(jìn)一步的思考是一些似是而非的錯(cuò)誤解法究竟錯(cuò)在哪里?必定是對(duì)概念理解的偏差才導(dǎo)致的錯(cuò)誤結(jié)果.經(jīng)過又一次正反兩個(gè)層面的開掘.思考深入了,學(xué)習(xí)的興趣也會(huì)逐步培育起來。
高等數(shù)學(xué)學(xué)習(xí)心得體會(huì)_高等數(shù)學(xué)學(xué)習(xí)總結(jié) 篇4
在我的意識(shí)里,但凡數(shù)學(xué)成績好的同學(xué),一定都是天資聰穎;而對(duì)數(shù)學(xué)一往情深的同學(xué),都絕非等閑之輩。自從上了高中,數(shù)學(xué)對(duì)我來說就成了軟肋,硬傷,成了讓我神傷的科目,突然間變得對(duì)數(shù)學(xué)一竅不通,才猛然間發(fā)覺自己的思維不知道被什么所禁錮,變得呆板而僵硬,做題猶如啃磚頭。
大一的時(shí)候,意外地發(fā)現(xiàn)我們必須學(xué)習(xí)高數(shù)課,我雖然很敬佩我們的高數(shù)老師,他和藹可親,對(duì)我們關(guān)愛有加,把高數(shù)講得清楚易懂,還告訴我們?nèi)绾螌W(xué)好高數(shù)以便更好地發(fā)展中醫(yī)。盡管如此,結(jié)局還是悲涼的,我終日以淚洗面,甚至產(chǎn)生了輕生的念頭,大一對(duì)我來說是不堪重負(fù),不忍回首的一年,期末了,還一道題都不會(huì)做,考完了,才發(fā)現(xiàn)自己是班上的墊底。高數(shù),讓我開始懷疑自己的智商,懷疑我以后能否自食其力。每一次上課,我都像個(gè)呆子,鉆進(jìn)耳朵的那些專業(yè)術(shù)語不知道該怎么去消化,而周圍的同學(xué)也都還是能回答問題,自信滿滿,這種強(qiáng)烈的對(duì)比讓我受挫,我開始重新審視自己。高數(shù),帶給我改變的動(dòng)力,我感謝高數(shù),但僅僅因?yàn)樗歉摺皹洹保冶粧煸诹松厦妗?/p>
在后來的學(xué)習(xí)中,我再也不敢對(duì)專業(yè)課掉以輕心,我開始覺得期末考試的內(nèi)容其實(shí)也沒有那么難,那么高數(shù)呢?究竟是它太難還是我從心里對(duì)它產(chǎn)生畏懼,以至我沒有勇氣相信自己可以認(rèn)識(shí)它?我怕,怕有朝一日終會(huì)再次遇到它,因?yàn)槟吧钥謶帧?/p>
經(jīng)歷了一年多的成長,我發(fā)現(xiàn)其實(shí)很多事情都沒有想象中那么難,也沒有想象中那么簡單,關(guān)鍵在于你如何對(duì)待它。我想起我可以為了自己做一個(gè)筆袋而一動(dòng)不動(dòng)坐一下午,并且為了解決出現(xiàn)的不足而把數(shù)據(jù)計(jì)算一遍又一遍,一遍遍拆,一遍遍改,在探索中前進(jìn),樂此不疲。而學(xué)習(xí)高數(shù)呢,一開始我怕,遇到不懂了,我更怕,最后呢,我只能逃課,不去聽,不去想,以為這樣就能躲過一切,我才發(fā)現(xiàn),我是個(gè)徹徹底底的懦夫,我只會(huì)做逃兵,我并沒有盡最大的努力。
在選課的時(shí)候,我發(fā)現(xiàn)還能選修高數(shù),這次,我不想再錯(cuò)過。我想起了《追風(fēng)箏的人》的一句話:“那里,有再一次成為好人的路。”是的,我選擇重新認(rèn)識(shí)高數(shù),我要為自己過去的罪行贖罪。
再次接觸高數(shù),捧著2年前讓我頭疼的課本,我發(fā)現(xiàn)其實(shí)真的可以懂,老師講的比較簡單,思路也很清晰。重新認(rèn)識(shí)了牛頓萊布尼茲的微積分,驚嘆他們天才般的才智,運(yùn)用無限的模糊理論,可以解決許多醫(yī)學(xué)上的問題,我才覺得高數(shù)真的是充滿了魅力和魔力,它能讓我們把簡單的問題先給復(fù)雜化最后再簡單化,培養(yǎng)我們的思維,更智慧巧妙地解決生活中的問題。學(xué)好了高數(shù),就像給你增添了一雙隱形的翅膀,你擁有了更開闊縝密的思維,許多問題突然變得迎刃而解了。
當(dāng)然,學(xué)好高數(shù)并非那么簡單,但探索其中的奧秘確實(shí)非常有價(jià)值,我想,如果能把自己學(xué)到的高數(shù)知識(shí)運(yùn)用到自己的生活,學(xué)習(xí),工作上,才算是真正學(xué)好了高數(shù),感謝高數(shù),這次不僅僅因?yàn)樗歉摺皹洹保俏颐靼祝实巧线@棵高樹,我看見了前所未有的迷人風(fēng)景。
